O.P.Code:23HS0840b

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.TechI Year I Semester Regular Examinations February-2024 ENGINEERING PHYSICS

	(Commuter Science & Engineering)			
Time	(Computer Science & Engineering) 2: 3 Hours Ma	x. Ma	rks: '	70
	PART-A	22, 2,242	110	
	(Answer all the Questions $10 \times 2 = 200$ Marks)			
1	a What is Interference and write their conditions.	CO1	L1	2M
	b Define Polarisation.	CO1	L1	2M
	c Define (i)Space lattice and (ii) Basis.	CO ₂	L1	2M
	d Define Bragg's condition for X-Ray diffraction.	CO ₂	L1	2M
	e Define dielectric constant.	CO ₃	L1	2M
	f What is hysteresis?	CO ₄	L1	2M
	g What are matter waves.	CO ₅	L1	2M
	h Write any two merits of quantum free electron theory.	CO ₅	L2	2M
	i Write any two differences between Intrinsic and Extrinsic semiconductors.	CO6	L2	2M
	j What is Drift and Diffusion in semiconductors	CO ₆	L1	2M
	PART-B			
	(Answer all Five Units 5 x $10 = 50$ Marks)			
	UNIT-I			
2	a Discuss the theory of interference of light due to thin films by reflection	CO1	L2	7M
	with suitable ray diagram.			
	b A plane transmission grating having 4250 lines per cm is illuminated with	CO ₁	L3	3M
	sodium light normally. In the second order spectrum, the spectral lines			
	are deviated by 300. What is the wavelength of the spectral line?			
	OR	~~~	~ .	107.5
3	Explain about Fraunhofer diffraction due to a single slit, Derive the	CO ₂	L3	10M
	conditions for bright and dark fringes.			
	UNIT-II			
4	Show that Face centered cubic crystal structure has more closely packed	CO ₂	L2	10M
	structure than SC and BCC.			
	OR	000		
5	a Explain how crystal structure determined by Powder X-Ray diffraction method.	CO2	L2	7M
	b Draw miller indices of planes (1 0 0), (1 0 1) and (010) in a cubic system.	CO ₂	L2	3M
	UNIT-III			
6	Explain Electronic, Ionic and Orientation polarisations.	CO ₃	L2	10M
	OR			
7	Explain about Dia, Para, Ferro, Anti ferro and Ferri magnetic materials.	CO ₄	L2	10M
	UNIT-IV			
8	a Derive Schrödinger's time independent wave equation.	CO5	L3	7M
	b Explain the physical significance of wave function.	CO ₅	L2	3M
	OR			

9	a Derive an expression for electrical conductivity in a metal by using classical free electron theory.	ıg CO5	L3	7M
	b Write the merits and demerits of classical free electron theory. UNIT-V	CO5	L2	3M
10	a Expain about intrinsic semiconductors.	CO6	L2	5M
	b Explain about extrinsic semiconductors.	CO6	L2	5M
	OR .			
11	a Describe the Hall Effect in semiconductors.	CO6.	L1	8M
	b Write any two applications Hall effect.	CO6	L2	2M

*** END ***

